Genipin inhibits NLRP3 and NLRC4 inflammasome activation via autophagy suppression

نویسندگان

  • Shui-Xing Yu
  • Chong-Tao Du
  • Wei Chen
  • Qian-Qian Lei
  • Ning Li
  • Shuai Qi
  • Xiao-Jing Zhang
  • Gui-Qiu Hu
  • Xu-Ming Deng
  • Wen-Yu Han
  • Yong-Jun Yang
چکیده

Inflammasomes are cytoplasmic, multiprotein complexes that trigger caspase-1 activation and IL-1β maturation in response to diverse stimuli. Although inflammasomes play important roles in host defense against microbial infection, overactive inflammasomes are deleterious and lead to various autoinflammatory diseases. In the current study, we demonstrated that genipin inhibits the induction of IL-1β production and caspase-1 activation by NLRP3 and NLRC4 inflammasomes. Furthermore, genipin specifically prevented NLRP3-mediated, but not NLRC4-mediated, ASC oligomerization. Notably, genipin inhibited autophagy, leading to NLRP3 and NLRC4 inflammasome inhibition. UCP2-ROS signaling may be involved in inflammasome suppression by genipin. In vivo, we showed that genipin inhibited NLRP3-dependent IL-1β production and neutrophil flux in LPS- and alum-induced murine peritonitis. Additionally, genipin provided protection against flagellin-induced lung inflammation by reducing IL-1β production and neutrophil recruitment. Collectively, our results revealed a novel role in inhibition of inflammatory diseases for genipin that has been used as therapeutics for centuries in herb medicine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caspase-1 cleavage of the TLR adaptor TRIF inhibits autophagy and β-interferon production during Pseudomonas aeruginosa infection.

Bacterial infection can trigger autophagy and inflammasome activation, but the effects of inflammasome activation on autophagy are unknown. We examined this in the context of Pseudomonas aeruginosa macrophage infection, which triggers NLRC4 inflammasome activation. P. aeruginosa induced autophagy via TLR4 and its adaptor TRIF. NLRC4 and caspase-1 activation following infection attenuated autoph...

متن کامل

Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy

The nucleotide-binding domain, leucine-rich repeat containing family caspase recruitment domain containing 4 (NLRC4) inflammasome can be activated by pathogenic bacteria via products translocated through the microbial type III secretion apparatus (T3SS). Recent work has shown that activation of the NLRP3 inflammasome is downregulated by autophagy, but the influence of autophagy on NLRC4 activat...

متن کامل

Quercetin Inhibits Inflammasome Activation by Interfering with ASC Oligomerization and Prevents Interleukin-1 Mediated Mouse Vasculitis

Interleukin-1β (IL-1β) is a highly inflammatory cytokine that significantly contributes to both acute and chronic inflammatory diseases. The secretion of IL-1β requires a unique protease, caspase-1, which is activated by various protein platforms called inflammasomes. Data suggests a key role for mitochondrial reactive oxygen species for inflammasome activation. Flavonoids constitute a group of...

متن کامل

P 106: Effects of Dimethyl Sulfoxide on NLRP3 Inflammasome and Alzheimer\'s Disease

Alzheimer's disease (AD), the most ordinary form of dementia and extracellular accumulation of Amyloid-β (Aβ) in senile plaques, is an important and a main event in the pathogenesis of AD. Deposition of Aβ Peptide initiates a spectrum of cellular responses that are interposed by the resident neuroimmune cells of the brain, the microglia. Recently, a novel inflammasome signaling&n...

متن کامل

Suppression of NLRP3 inflammasome by γ-tocotrienol ameliorates type 2 diabetes.

The Nod-like receptor 3 (NLRP3) inflammasome is an intracellular sensor that sets off the innate immune system in response to microbial-derived and endogenous metabolic danger signals. We previously reported that γ-tocotrienol (γT3) attenuated adipose tissue inflammation and insulin resistance in diet-induced obesity, but the underlying mechanism remained elusive. Here, we investigated the effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015